The design and implementation of an infrastructure for multimedia digital
libraries

Arjen P. de Vries

Centre for Telematics and Information Technology
University of Twente, The Netherlands

arjen@cs.utwente.nl

Brian Eberman
Cambridge Research Lab
Digital Equipment Coorporation
bse@crl.dec.com

David E. Kovalcin
UNIX Engineering
Digital Equipment Coorporation
kovalcin@unx.dec.com

Abstract

We develop an infrastructure for managing, indexing and
serving multimedia content in digital libraries. This infras-
tructure follows the model of the web, and thereby is dis-
tributed in nature. We discuss the design of the Librarian,
the component that manages meta data about the content.
The management of meta data has been separated from the
media servers that manage the content itself. Also, the ex-
traction of the meta data is largely independent of the Li-
brarian. We introduce our extensible data model and the
daemon paradigm that are the core pieces of this architec-
ture. We evaluate our initial implementation using a re-
lational database. We conclude with a discussion of the
lessons we learned in building this system, and proposals for
improving the flexibility, reliability, and performance of the
system.

Keywords: digital libraries, multimedia databases, mul-
timedia modeling, content-based retrieval, distributed ob-
Ject model.

1. Introduction

Vast digital multimedia libraries and databases are being
created now by businesses and government agencies. These
libraries will change the way we interact with multimedia in-
formation both personally and professionally, and the busi-
ness structures we build to deliver, store and index the infor-
mation.

In order to really use multimedia information, technolo-
gies for easily browsing, surnmarizing and indexing the in-
formation must be built. We build an infrastructure for de-

livering indexed videos using the network, and fostering re-
search in multimedia indexing. We focus on building an in-
dexing engine, and investigate user-interface issues for de-
livering video to distributed clients.

In order to realize this vision, a structure for managing,
indexing and serving content must be developed. We be-
lieve, that this structure must follow the model of the web
and thereby be distributed in nature. This has implications
on the design of the overall system and the structure of the
database which is used for indexing and retrieval. In this pa-
per, we discuss our initial prototype design of such a struc-
ture and our implementation of a database for managing the
information. We conclude with a discussion of the lessons
we learned in building this system, and proposals for im-
proving the flexibility, reliability, and performance of the
system.

2. Digital libraries and the Librarian

In this paper, we concentrate on the design and imple-
mentation of the Librarian. The Librarian is the digital li-
brary’s component system that manages information about
the raw data. Meta information in the Librarian consists of
both manual annotations and automatically extracted data.

We first developed the simple demo system shown in fig-
ure 1, to enable early evaluation of user-interface and video
delivery issues. The user interface of the prototype system
consists of HTML pages, CGI scripts and Java programs.
Users can connect with the digital library through the web.
The user contacts the Librarian and issues a query. The Li-
brarian looks up the location of video fragments matching
the query, and presents some information about these frag-
ments to the user. The user selects the video fragments of

L Client Web Browser]

Figure 1. The demo system.

interest. Finally, the media server plays selected fragments
to the client.

In the demo system, the only meta data we take into ac-
count are the words occurring in the closed captions of the
videos. This decision makes it easy to prototype a retrieval
system using the AltaVista! search engine. The Librarian
encodes this meta data in an HTML document called the an-
notation snapshot. This annotation snapshot is then indexed
by the AltaVista search engine, as if it were a normal web
page.

We encode the object identifier of the video, together
with timestamps to address the fragment of the video that
is relevant to the meta data under consideration, in special
HTML tags in the snapshot. Finding appropriate video data
for a query is delegated to the AltaVista indexing engine.
The Librarian parses the returned HTML documents for the
encoding tag, and presents the subset of the results that refers
to the videos as media hits. After selection by the user, these
media hits start a process in the media server to deliver the
video stream to the user, starting at the decoded timestamp.

AltaVista (term, oid & timestamps)
the Librarian (0id, location)

Important design decisions of a web-based digital library
are clearly visible in the demo system’s architecture. We do
not believe that the Librarian, the software to manage the
meta data, should also manage the video data. Conversely,
we believe it is crucial to separate the storage of meta data
from the storage of the videos, for two reasons.

Most importantly, the owners of the video data and
the management of meta-information may involve different
partners. The Librarian can inform users about the avail-
ability of matches at a media company selling video stock
footage, or at the archive of a public broadcaster. Each com-
pany most likely has its own policies to serve and maybe sell
the data (for example, we copied the following line from a
footage company’s website: ‘We offer footage licensing on
a per-second basis for use in video productions or multime-
dia’). The users decide whether they want to pay for quality
information, or use the maybe less valuable but free public
video fragments.

! AltaVista is a trademark of the Digital Equipment Corporation.

The second reason concerns the fast developments in
multimedia networking. It is a much better idea to delegate
the responsibility of video delivery to the operating system.
Otherwise, we have to keep up with the pace of these devel-
opments in our database software. However, query process-
ing and management of the meta data is a task orthogonal
to the presentation of the retrieved video data. This orthog-
onality should be reflected in the design of a digital library
system.

In the demo system, the Librarian is implemented as a set
of Perl scripts [10], loosely connected to an AltaVista in-
dexing engine. The following problems urge the adoption
of database technology for the Librarian. First, the collec-
tion of types of meta data that we want to support varies over
time. For example, we recently extended the demo system
with feature based image retrieval. Also, as new compressed
file formats for the digitized video data become available,
these should be easily incorporated in the system. Second,
relations between meta data and original objects are better
managed by a database system. In the extended demo sys-
tem, we do not only relate the videos to the words from the
subtitles, but also to the automatically extracted keyframes.
Also, these keyframes are related to their feature vectors.
Supporting more modes of retrieval makes it more com-
plex to manage the relations between the objects in the li-
brary. Finally, multiple users want to edit and add annota-
tions. Database technology readily provides the functional-
ity needed for scaling up to many users.

The rest of this paper deals with our attempt to use rela-
tional database technology for the implementation of a meta
database we term the Librarian. We restricted ourselves to
the relational model for reasons of software availability on
the platforms we must support.

3. Architecture

Creation and maintenance of a digital library involves
several more or less independent parties. These parties in-
clude human annotators, software to extract meta data auto-
matically, and owners of multimedia footage. A digital li-
brary can only be succesful if its infrastructure can connect
these parties flexibly. Like Silberschatz, Zdonik et al. [6],
we try to avoid creating a monolithic database system that
controls the whole environment. Cooperation between the
parties participating in a digital library demands an open dis-
tributed architecture.

The main theme of our web-based digital library design is
extensibility. It is very important that we can extend the sys-
tem with new data types. These data types are new kinds of
annotations, or new file formats for the bare data. If footage
becomes available in MPEG2 format, we add the data types
to handle MPEG2 files. And if we decide to label the speech
data of the video by speaker, we have to extend the available

annotation types with a type to capture information about the
speaker.

We also need extensibility on operations. We want to add
and delete components for automatic meta data extraction.
When new tools become available, it should be straightfor-
ward to integrate them in the environment. The new kind of
meta data may be very useful for retrieval.

Recall the arguments for separating the media server
from the Librarian. Similarly, a good design separates meta
data extraction from meta data management. We may not
own the source code of the software that provides a new
method for meta data extraction, or the implementation of
a new low-bitrate video encoding standard. Also, meta data
extraction may take much processing, needs special knowl-
edge bases, or uses special hardware. A good example of
the last case is the extraction of closed captions from a video
tape.

The architecture we developed provides extensibility in
two ways. First, the Librarian provides an extensible data
model. Second, we supporta set of loosely coupled daemons
to perform operations on the data. As we illustrate in this
paper, the combination of the data model with the daemon
paradigm builds an extensible collection of search methods
for annotated multimedia data.

3.1. The data model

The basic representation of the database managed by the
Librarian is a semantic network [5]. A semantic network is
a graph where the nodes represent concepts. The arcs in the
graph represent relationships between these concepts. The
three modelling entities in the Librarian’s semantic network
are:

e Semantic object:
The basic concept in the network. It models media ob-
jects, as well as things, persons, places, and actions that
occur in the real world. In the figures in this paper, we
draw semantic objects as circles.

e Representation object:
Terminal node in the network, that stores a value for
the semantic object it is connected to. A representa-
tion object can only be attached to one semantic object.
It also has a type field, so that we can represent dif-
ferent kinds of representation objects, eg. MPEG and
Motion-JPEG. Drawn as hexagons.

o Semantic relationship:
A semantic relationship links two semantic objects. It
is used to model annotation, the fundamental process
supported in the digital library. Semantic relationships
are drawn as diamonds.

Figure 2. Modelling a video and a person in
the Librarian.

Figure 2 gives a first impression of modelling objects
in this data model. On the left, we represent some par-
ticular video. Several representations are attached to the
video. We have the digitized MPEG video, the transcript
from the closed caption decoder, and a low-bitrate version
of the video for viewing over a low bandwidth connection.
We also see a meta annotation for its producer, and a tem-
poral annotation for a subtitle. Note that the semantic object
for subtitle and its text representation are different entities in
our model. In the physical design, we could of course com-
bine the semantic object subtitle and its text representation
in the physical design. However, on the logical level, these
are different concepts. We can only specify conditions on
the content of representation objects. Finally, we see how a
keyframe and its colour histogram are attached to the video
through an image select relationship. On the right of fig-
ure 2, we show the representation of a specific person. This
person has representations attached that are used as models
in pattern recognition processes. We see a model for face
recognition and a model for speaker identification.

To model specific concepts, like ‘video’ or ‘person’, we
define an inheritance hierarchy over the semantic objects.
Inheritance enables us to inherit relationship constraints:
constraints that apply to pairs of semantic objects. An ex-
ample of such a relationship constraint is that ‘only video
objects can be annotated with closed-caption representation
nodes’. The most important type defined under semantic ob-
ject is media object. Media object is specialized for video,
audio, text, or image. Other things, such as people or places,
are also defined under semantic object.

Representation objects are terminal nodes in the network.
Because only representation objects can store values for the
semantic objects, conditions that specify constraints on the
content of an object always involve representation nodes.
Where the semantic objects are used to capture the structure
of and relationships among the data managed by the Librar-
ian, the representation objects provide the content for query-
ing and presentation. Physically, this ‘content’ can be just a
reference to a location in a media server.

. c%ee
“ Soe

Figure 3. Annotating an audio track using
speaker identification.

Annotations are modelled with semantic relationship
nodes between two semantic objects. We refer to the seman-
tic objects linked by the relationship as the major and the mi-
nor participant in the semantic relationship. The major par-
ticipant is the object that the annotation is about, the minor
participant is the object that models the annotation itself.

We introduce two base types of annotations in the Librar-
ian: meta annotation and temporal annotation. A meta an-
notation always applies to the major participant as a whole.
Examples are the title, the producer, or a contract covering
the use of footage for a movie. A temporal annotation ap-
plies only to a particular fraction of the major participant,
defined by a time interval. Examples of such annotations
are closed captions, color histograms of keyframes, and the
output of speaker or face identification algorithms. A third
base annotation type could be vague-temporal annotation,
that would also store a measure representing the confidence
that the minor participant is really about the major partici-
pant.

We also use semantic relationship nodes to model part-
ofrelationships between different semantic objects. A video
can be segmented in several keyframes, that can be used for
image querying [9]. We model this dependence as an ‘im-
age select’ relationship between the video’s semantic object
and an image semantic object. Extracted information for the
keyframe image, eg. its colour histogram, is attached to the
image’s semantic object. Similarly, we use an ‘audio select’
relationship between the video and its audio track.

An audio track can be annotated with references to its
speakers. With a speaker identification algorithm, this an-
notation process can be performed automatically if we have
trained speaker models. The Librarian manages the infor-
mation needed to perform this pattern recognition process.
Annotating the audio track of a video by speaker is shown
in figure 3. A user may later correct the automatic classifi-
cation by editing the temporal annotations added by the al-
gorithm.

Figure 4. A daemon that annotates a video
with its transcript.

3.2. The daemon paradigm

In our architecture, daemons are autonomous software
components that perform operations on the data in the dig-
ital library. A daemon needs an input object, and gener-
ates a not-yet existing output object. The daemons are not
controlled by the Librarian, but operate on their own ini-
tiative. They connect to the Librarian, request some work,
and promise to perform this work within a certain amount of
time. The Librarian registers what work is done, and what
work is on the way. If the daemon does not finish in time,
the Librarian may give out that work to a another daemon
that requests work. A daemon could simply compress a raw
video file, or move a captured video from an annotation ma-
chine to the media server.

The selection of work is a recursive query, issued by the
daemon and processed by the Librarian. We refer to this
query as the get work query. A get _work query consists
of a parent condition, p, and two child conditions, ¢; and ca.
The Librarian has to identify those objects, that fulfill p, that
do have a descendent fulfilling the first child condition ¢;,
but do not have a descendent fulfilling the second child con-
dition ¢5. A daemon that creates a low-bitrate version of an
MPEG video, specifies the following expressions:

p semantic object type is video
c1 representation object type is MPEG video
cg representation object type is low-bitrate video

We identify two daemon classes, distinguished by the
kind of conditions expressed in p, ¢; and ca. Like the low-
bitrate daemon, most daemons only condition onthe types of
objects involved. Other daemons also have to condition on
the content of the objects though. We refer to these classes
as type-triggered daemons and content-triggered daemons.
The distinction is very similar to the classification of multi-
media objects in active and passive objects, based on their
role in query processing [1].

An example of a type-triggered daemon is a daemon
that annotates a video with its transcript, see figure 4. A
transcript is a text representation of the information in an
audio or video object, that is synchronized with the ob-

Ject through timestamps. [t can contain hardware-decoded
closed-captions, or a text that has been produced manually
during human video annotation. This dacmon operates on
videos that are attached to a transcript, but have not been an-
notated with subtitles yet. The dacmon parses the transcript
and adds annotations to the video. Other examples of type-
triggered include a daemon that creates a low-bitrate version
from an MPEG video, and a daemon that moves a digitized
video file from the client machine to the media server.

A daemon that performs facial recognition on video
fragments would typically be implemented as a content-
triggered daecmon. Because facial recognition is an expen-
sive operation, we do not want the daemon to work on videos
that are not likely to contain any human faces. Testing if a
fragment has skin colour is a relatively inexpensive opera-
tion, and thus the daemon may request the subset of video
fragments that have a high amount of skin colour. Condi-
tion ¢; is not just defined by the video’s type, but also by its
content.

4. Implementation

We implemented a prototype of the extensible architec-
ture outlined in the previous section. For reasons of avail-
ability, we used the Postgres database system [8] as rela-
tional backend in the first implementation.

All components of the web-based digital library have
been prototyped using the Perl language. Communication
between clients, daemons, media servers, and the Librar-
ian, used the HTTP protocol and an Apache web server. We
wrote a (trivial) RPC mechanism in Perl, using HTTP POST
and simple string-based parameter mashalling, for interac-
tion between the Librarian and its daemons and clients.

4.1. The data model

The data model has been implemented as follows. A
Postgres-library for Perl provides basic persistency with the
relational model. We implemented the functionality needed
to manage the Librarian’s data model in several layers on top
of this.

In the database, we create the following tables:

semantic object
representation object
semantic relationship

(id,type)
{id, type, parent id, value)

{id, type,major_id, minor_id)

Furthermore, we use three more tables to store the type
information, and another table to store the relationship con-
straints. The type field in the three tables for the basic con-
cepts of the semantic network is the identifier of the type in
its associated table of types. The value field of the represen-
tation objects stores either a string or a URL representing a
location in the media server.

The first layer of the Librarian is a wrapper around the
underlying relational database. In this wrapper, we provide
table inhentance. For convenience, we used the inhenitance
model readily provided by Postgres. In this bottom layer,
we also hide caching of the tables used to maintain our type
system. This is not entirely safe, because another user could
change the type system interfacing directly to the database.
To avoid such inconsistencies, the underlying database can
only be accessed through the Librarian.

The second layer provides the base data types needed to
represent the semantic network. The basic operations are
creation and deletion of a new data type, creation and dele-
tion of new objects, attachement of an object to another ob-
ject, and the management of relationship constraints. For
example, when adding a new semantic object type, like
‘Video’, we must also specify which representation types it
can be linked to, like ‘mpg’, “transcript’, and ‘low-bitrate’.

The Librarian’s top layer is the APL. This API specifies
how daemons and clients interact with the Librarian. It man-
ages fragmentation of objects over semantic objects and rep-
resentation objects. It also provides the query interface to
clients and daemons. In the current implementation, we can
only express conditions over three different views, consist-
ing of the fields that are shared by all instances of seman-
tic objects, representation objects, or semantic relationships.
The API call find objs executes an SQL query over one
of these views. Extra fields added for subtypes can only be
accessed through get _all_attributes, and cannot be
used for querying.

Retrieving all video’s that contain ‘all American bear” in
the subtitles works as follows. First, we specify a condition
on the value of the subtitle. Thus, the where clause of the
query we perform over the representation view is:

value LIKE ‘%all American bear%’
AND type = ‘subtitle’

Next, we select all annotations that have a minor partici-
pant in the set returned by this query, and we join the major
participant identifiers of these annotations with the view on
semnantic objects to return the video objects containing this
phrase.

4.2. The daemon paradigm

Daemons connect to the Librarian and request work.
Next, they commit to perform the work within a specified in-
terval. If the daemon does not finish within this interval, the
work expires, and can be handed to another daemon. The
management of work that is ‘in progress’ is based on keys
encoding a timestamp when the work is due. The database
generates a key for the object, and also creates a temporary
object that stores the key and functions as a placeholder for
the result. The key is handed to the daemon, and is required

when the daemon submits its work. Because the key en-
codes a timestamp, it ts easy to collect the identifiers of ex-
pired placcholders while processing new requests for work.

The Librarian provides two ways to handle a daemon’s
request for work. If the daemon calls get .and do_work,
1t promises to do the work within the amount of time it spec-
ifies as a parameter. After finishing its work, the daemon
calls finish.work to submit its results. Some daemons
need information about the object to work on, before they
can indicate the time it will take to perform the job. For
example, the time necessary to generate a low-bitrate ver-
sion of an MPEG video depends on the size of the video.
In that case, the daemon first calls get work, which re-
turns the object identifiers of a set of objects that need work.
Subsequently, the Librarian can provide more information
about the object throught the normal query interface. Then,
do._work is called to commit to the work. If this job has not
been handed out in the meantime, the daemon proceeds like
before.

The get_work query is a recursive query, because we
do not know the structure of the database before we access
it. We have to ascend the outgoing connections from the
objects that satisfy the parent condition, to check that there
exists a child for condition ¢, , but no child fulfilling condi-
tion ¢;. Traversing the recursive structure can be an expen-
sive operation. The straightforward implementation iterates
over the objects that satisfy p, and traverses the network for
each parent object sequentially. By using three temporary
tables to manage two generations of objects under consid-
eration, and the parent objects that still satisfy both condi-
tions, it is possible to traverse the network for all parents at
once. This approach significantly speeds up processing of
the get_work query.

5. Evaluation of the prototype implementation

Evaluation of the prototype implementation described
in the previous section revealed several performance prob-
lems. For example, adding only 700 annotations for an hour
of digitized video takes an unacceptable 55 minutes on an
Alpha NT box with 256 MB main memory. Some of these
performance problems are caused by the low performance
of the Postgres database system, and will automatically dis-
appear with a higher performance database. However, the
layered implementation of our extensible data model intro-
duces unnecessary query processing that should be avoided.

Because we used the relational data model for the imple-
mentation of the Librarian, the following pieces of the data
model have to be managed ourside the database system:

o Use of the type system;

e Rule checking upon insert and delete;

¢ Fragmentation of objects over separate representation
and semantic object tables.

Because this processing takes place outside the database,
in the interaction with the relational backend we often per-
form tuple-at-a-time processing instead of set-at-a-time pro-
cessing. Also, the optimizer cannot choose the correct query
execution plan, because it does not know the relationships at
the higher level. To avoid these problems, the bottom lay-
ers that provide our extensible type system should be pushed
into the database management system.

Another problem, also related to the implementation of
the data model on a relational database, is the lack of power
of the associated query language. Since we cannot use
new operations on the data in the query language, it is not
straightforward to query on content of the objects in the
database.

One result of this problem is that including content-
triggered daemons in this implementation forces us to sep-
arate such a daemon in two subdaemons. For the face-
recognition daemon described before, that prefilters the
videos using a condition on the colour distribution of the
keyframe images, we first have to perform the operation
specified in the condition and store a numeric value as output
value. Next, we can refer to that value in condition ¢, of the
second subdaemon, that really does the facial recognition.

6. Advantages of extensible database systems

An object-relational system extends the relational model
with abstract data types (ADTs) [7]. ADTs offer many
advantages for the implementation of the Librarian. Most
importantly, the type catalogues are maintained inside the
database instead of in external code. This reduces the over-
head introduced by the type system, because the database
can cache the type tables in memory. Because the database
controls the type catalogues, this simplifies cache manage-
ment.

Operations on the data are available in the query lan-
guage. Queries that cannot be expressed as text expressions,
like image similarity queries, can be now be expressed using
method calls. The Chabot image database management sys-
tem demonstrates how an image ADT in Postgres enables
the usage of both traditional querying and approximate re-
trieval techniques [4].

With data extensions inside the database, we can improve
performance of query processing in at least two ways. First,
we can avoid some processing by encapsulating some rela-
tionships within an ADT. If we create an abstract data type
that encapsulates all subtitles in one large object, like in fig-
ure 5, we can achieve higher performance. Second, the op-
timizer can choose specialized index structures provided by
the type extensions. For instance, queries involving similar-

‘\

ADT

Figure 5. Encapsulate several subtitles in one
ADT.

ity search can be processed more efficiently using spatial ac-
cess methods [2].

Another advantage of the object-relational model is that
we can build indices on function expressions. This function-
ality can be exploited to avoid the permanent storage of in-
termediate results. For example, the process shown in fig-
ure 3 uses the audio representation of a video to add tem-
poral annotations to that audio representation. In the rela-
tional model, we need a table for the audio object related
to the video, and a table to store the temporal annotation.
With indices on function expressions, we can create an in-
dex on speaker._detect (audio_select (video),
person) instead. Hence, we do not have to maintain the
intermediate audio result. We answer queries for the tem-
poral annotations from speaker _detect using the index
structure.

7. Further work

The first task for further work is the development of a
suitable query language for the digital library. Extensible
databases, discussed in the previous section, seem to pro-
vide a good interface to the management of data. How-
ever, traversal of links in the semantic network cannot be
expressed in a declarative nature in an object-relational
database like Hlustra™ . The definition of a query in-
terface, that does not conflict with the extensible nature of
the architecture, requires more research. The problems we
found in the evaluation of the prototype, indicate that simply
building some layers on top of an object-relational database
(instead of a relational database) may not provide sufficient
performance either. We have to perform query optimaliza-
tion in these layers, similar to the approach taken in the Gar-
lic heterogeneous database project [3].

The communication between the components of the dig-
ital library is another topic for further research. A so-called
‘software bus’ provides better control over the actors in our

environment. We are currently redesigning this part of the
digital library architecture based on CORBA’s distributed
object model. This approach provides better tools to provide
security. In the current approach, any piece of software that
knows the Librarian’s API can change the meta data.

The combination of such a software bus with an extensi-
ble database creates an opportunity for a tighter integration
of daemons to the database. Some of the daemons can be im-
plemented as methods that operate from within the database.
But, as we discussed before, we should realize that often the
code to do meta data extraction is not under complete con-
trol of the party managing the meta data.

With an architecture based on CORBA, we can handle
this situation as follows. In the database, we specify the in-
put and output of the daemon as a method call of the data
type of the objects it operates on. The daemon is imple-
mented as a callback, executed from within the method de-
fined in the database. The get_work query can be ex-
pressed in the same query language as other queries. Also,
a daemon implemented as a distributed object, does not
have to query the database to retrieve its input information,
but performs its operations from within the context of the
database. We do not have to define the location and imple-
mentation of the daemon, but we must specify the behaviour
of the daemon. From a viewpoint of data management, this
seems a better idea than the very loosely coupled structure
we support now. Further research is necessary to evaluate
this approach.

8. Conclusions

Collections of multimedia objects in digital libraries can
only be managed in a loosely coupled infrastructure con-
sisting of databases, advanced media servers, daemons, and
web-based clients. We should not integrate presentation and
access in a big monolithic database system, but separate me-
dia service from management of meta data. Similarly, the
extraction of meta data should be relatively independent of
the management of the extracted meta data.

The combination of an extensible data model with the
proposed daemon paradigm has been shown to be capable
of providing the functionality for both querying and annotat-
ing. However, the evaluation of the prototype implementa-
tion revealed several problems with the implementation on a
relational platform. We analyzed the advantages offered by
object-relational technology, and propose further research in
this direction.

The problems with modelling nested relationships in re-
lational, but also in object-relational databases, form a major
problem for providing efficient management of meta data.
This problem impedes the adoption of database technol-
ogy to manage data in the digital library setting. Databases
suited for a role in digital libraries efficiently handle query-

ing and model the complex relationships between the man-
aged data.

References

(1]

21

3]

41

[3]

(6]

[

(8]

91

(10]

E. Bertino, B. Catania, and E. Ferrari. Multimedia Databases
in Perspective, chapter Query Processing, pages 181-217.
Springer Verlag, 1997.

C. Faloutsos. Searching multimedia databases by content.
Kluwer Academic Publishers, Boston/Dordrecht/London,
1996.

L. Haas, D. Kossmann, E. Wimmers, and J. Yang. An opti-
mizer for heterogeneous systems with nonstandard data and
search capabilities. Bulletin of the Technical Committee on
Data Engineering, 19(4):37-44, December 1996.

V. Ogle and M. Stonebraker. Chabot: retrieval from a re-
lational database of images. I[EEE Computer, 28(9):4048,
September 1995.

G. Sagerer and H. Niemann. Semantic networks for under-
standing scenes, chapter Knowledge representation. Plenum
press, 1997.

A. Silberschatz, S. Zdonik, and et al. Strategic directions in
database systems - breaking out of the box. ACM Computing
Surveys, 28(4):764-778, December 1996.

M. Stonebraker and D. Moore. Object-relational DBMSs:
The next great wave. Morgan Kaufmann Publishers, Inc.,
1996.

M. Stonebraker, L. Rowe, and M. Hirohama. The implemen-
tation of POSTGRES. IEEE Transactions on Knowledge and
Data Engineering, 2(1):125-142, March 1990.

H. Wactlar, T. Kanade, M. Smith, and S. Stevens. Intelligent
access to digital video: The informedia project. JEEE Com-
puter, 29(5), May 1996.

L. Wall, T. Christiansen, and R. Schwartz. Programming
PERL. O’Reilly & Associates, Inc., 2nd edition edition,
1996.

